
A I

/ I mY

AIAA 2002-4673

Autoreturn Function for a Remotely
Piloted Vehicle

J. D. McMinn and E. Bruce Jackson

NASA Langley Research Center
Hampton, Virginia

Guidance, Navigation & Control Conference

5-8 August 2002
Monterey, California

For permission to copy or to republish, contact the copyright owner named on the first page.

For AIAA-held copyright, write to AIAA Permissions Department,

1801 Alexander Bell Drive, Suite 500, Reston, VA, 20191-4344.

AUTORETURN FUNCTION FOR A REMOTELY PILOTED VEHICLE

J. D. McMinn* and E. Bruce Jackson*

NASA Langley Research Center
Hampton, Virginia

Abstract Introduction

An algorithm to maneuver an air vehicle to intercept
and follow a pre-planned path while remaining within
an arbitrary, closed boundary is outlined. The

immediate application is for an autonomous lost-link
return-to-runway function for a remotely piloted vehicle

being developed by NASA, but other applications are
hypothesized. Results of implementation in a flight

simulator are given.

Nomenclature

D

g
J

L

f/

R

V

X

y

distance between turn circle centers

gravitational acceleration
turn direction indicator

+1 for a turn that begins with a right turn

1 for a turn sequence begins with a left turn
intercept trajectory style

1 for a turn that is first left then right
or vice versa

+1 for right then right or left then left
linear measurement (figure specific)

number of points defining boundary
turn radius

velocity
boundary coordinate (+ East)

boundary coordinate (+ North)

),
0
g/

Z

angular measurement (figure specific)
angular measurement (figure specific)

bank angle
course from one turn circle to next

track angle

subscripts
a/c aircraft

cmd commanded value

i boundary index number

nav from navigation module
nora nominal value

Remotely-piloted and unmanned air vehicles are
becoming increasingly common, especially in the
development process of new aerospace vehicles. During

the development of a remotely-piloted vehicle at
NASA, an autonomous return to the runway in the

event of the loss of command uplink was required.
Since the vehicle was to be operated within a restricted

flight test range it was imperative that the vehicle avoid
penetrating the range boundary in the process of

maneuvering to intercept and follow the desired
preplanned flight path back to the runway.

This paper describes the elements of an autoreturn

algorithm meant to meet this requirement. This
algorithm has been realized and tested in a real-time

flight simulation. The scope of this paper includes the
elements unique to the autoreturn function; it does not

describe the underlying control laws or autopilot
(heading- and altitude-hold) subsystems.

Applications of this algorithm include any

autonomously maneuvering vehicle that must plan in
real time to avoid specific areas of airspace while

performing a preplanned mission.

Autoreturn Requirements

Because the air vehicle to which this algorithm applies
will be unmanned (normally remotely-piloted), the Air

Force Flight Test Center and NASA's Dryden Flight
Research Center, where the vehicle will be flown,

require a Flight Termination System (FTS) that will
effectively destroy the vehicle if control is lost and the

vehicle has penetrated the boundaries surrounding the
designated testing area at Edwards Air Force Base. To

avoid operation of the FTS in the case of loss of
command uplink, the vehicle is to be equipped with a

boundary detection and avoidance function. With
additional software, some well chosen waypoints, and

an accurate definition of the boundaries, an autoreturn
function can be developed to guide the vehicle back to

Senior Research Engineer, Dynamics and Control Branch, Airborne Systems Competency; Member, AIAA

thelaunchpointwithoutaboundaryexcursion,andto
executeanautomaticlanding.

gates.Eachgateisassociatedwithanairspeed,altitude,
position,andnominalheading.

The autoreturnfunctionprovidesfour-dimensional
guidancetobringthevehiclebacktotherunwayforthe
automaticlanding.Theautoreturnfunctionworksin
conjunctionwith a vehicle-specificautopilotthat
providesheadingcommandandflightpathoraltitude
commandfeatures.

Autoreturn Desi_y_

The nominal autoreturn path is predetermined and hard-

coded into the vehicle's flight control system. Since the
vehicle's position at the time of loss-of-link is

unpredictable, the autoreturn function must provide
guidance to steer the vehicle from its present position

onto the preplanned path, without exceeding vehicle
flight envelope and range boundaries.

In addition to this requirement, the vehicle must detect

an out-of-nominal approach path to the runway and
initiate and perform a go-around maneuver when

necessary.

The connection between the autoreturn function and the

autopilot is a guidance law that takes errors in the

vehicle's path and steers it back to the desired path.

Nominal Flight Path

As shown in figure 1, the nominal trajectory consists of
an ordered set of waypoints that lead from the test area

to the runway landing pattern. The waypoints are
defined in terms of latitude, longitude, altitude, and

airspeed.

The flight path designer must also specify a nominal
bank angle to use in steering, which should not exceed

the maximum allowable bank angle. Combined with
scheduled airspeed, this bank angle determines the

turning radius (in still air) of the vehicle at each
waypoint.

Two of the waypoints are placed in predetermined

positions: one is placed below the runway which sets
the glideslope intercept position on the runway, and the

second waypoint is placed at the missed approach point.
These are waypoints 2 and 1, respectively, in figure 1.

This information is stored on-board in the form of a

"flight path" segments list, which includes turn radius

(the value of 0 is used to indicate a straight segment),
latitude, longitude, altitude, airspeed, heading and

distance-to-go of the initial point of each segment.

The vehicle also carries on-board a complete waypoint

definition list as well as a range boundary definition
(described later).

Interception Algorithm

The on-board trajectory intercept planning is performed
in real-time at the point that autoreturn is engaged

(nominally due to loss-of-command-uplink, but
possibly at the remote pilot's command). The algorithm

uses an on-board Global Positioning System (GPS) for
position information and then constructs an intercept

trajectory from the present position, heading, and
airspeed to one of the preplanned waypoints.

Only waypoints outside of the runway landing pattern

(e.g., waypoints 5 and higher in figure 1) are considered
as intercept targets.

The intercept algorithm considers both left- and right-

hand turns from the present position (using the nominal
bank angle) with tangent lines from each initial arc to a

corresponding intercept arc (both left- and right-hand
turns) at each candidate waypoint as indicated in

figure 2. This turning onto a prescribed path is similar
to that discussed in reference 1 but different in that here

the goal is to intercept a predefined trajectory at a
particular point. The intercept arc is expected to be

flown at the scheduled waypoint speed. With the speeds
and nominal bank angle defined the turn radii fall out as

V 2

R - -- (1)
gtan0nom

where v is velocity, g is the acceleration of gravity and

(bnom is the nominal bank angle. With the turn radii
calculated, the turning circles can be constructed using

the current and waypoint headings for orienting the
axes as shown in figure 3 for the two right-turn-first
approaches (left turns are the reverse).

The planning algorithm connects straight lines between

the waypoints with tangential circular arcs to "cut the
corner" at each waypoint. The points of tangency

between the turns and straight segments are denoted as

The required parameter for defining the turn sequences

is the course heading from one turning circle to the next
and that is defined as

American Institute of Aeronautics and Astronautics

7_=fl - k? (2)

where k is defined as 1 in the case of opposite turns,
i.e. a right turn followed by a left turn or left followed

by a right turn. fl as depicted in the figure is the angle
from the current track to a line connecting the center of

the initial turn to the center of final turn. 5'is also shown
in figure 3 and is computed as

7 = J sin-1 (_) (3)
D

where k is as defined earlier, R1 and R2 are the turn

radii, D is distance between the turn centers, andj is a
parameter that has a value of +1 if the initial turn is to

the right and 1 if it is to the left.

In the case of similar turns (i.e. the candidate intercept
trajectory contains two left turns or two right turns) if

D < / R1 R2/there is no solution because one turning
circle lies completely inside the other and there is no

way to construct a tangent line. If the turns are to be of
opposite direction and D < (R1 + R2), the circles

intersect and the tangent line can not be drawn such that
a change in direction arises.

Each candidate intercept trajectory is then evaluated to

check if a range boundary is crossed during the
maneuver: the trajectories that cross a range boundary

are ignored. Of the remaining trajectories, the one that
results in the shortest overall path length to the landing

pattern is selected.

If no viable path to any of the outer waypoints is found,
the vehicle could adjust its speed to a nominal

autoretum value, v..... and turn parallel to the closest
range boundary and continue evaluating candidate

trajectories to waypoints along the preplanned path
until a viable choice is found. This is equivalent to

finding ones way out of a maze by keeping one hand on
the wall while always moving forward. This was the

strategy used in the real-time simulations in this study.

An alternative strategy, which in most cases, is a faster
way out of the maze takes advantage of the boundary

corner points and the knowledge of their numbering
sequence. To properly define the boundary, the comer

points must be ordered, such that the order implies the
connectivity. And, the boundary must be closed, so the

first point is connected with the last. If the first
boundary point is intentionally placed near the landing

pattern, a strategy to adopt is to plan a path to the
geographical midpoint of the highest and lowest

numbered comer points to which the vehicle has line of

sight. (Line of sight exists when a line from the current

position of the vehicle to the corner in question
intersects no boundary segments.) This ensures the

vehicle will be heading back to the runway area. As
more comer points come into line of sight, the target

midpoint is recomputed and a corresponding path is
found. If there is no path to that midpoint the algorithm

temporarily backs off from using the highest and lowest
numbered boundary point until a path is found.

Figure 4 shows a flight path of a vehicle implementing
this line of sight strategy. For this case, as depicted in
the figure, most waypoints have been removed and the

range boundary artificially restricted. The boundary
corner numbering has also been shown for clarity. The

aircraft's initial position is near comer7 when
autoretum is engaged. In this case there is no viable

two-turn intercept trajectory to any predefined
waypoint. The strategy then calls for a trajectory

toward the midpoint of the highest and lowest
numbered comer points to which the aircraft has line of

sight. In this case that is the midpoint of comers 7
and4 respectively (marked by the letter A in the

figure). As the vehicle flies at Vnom toward that
midpoint it continuously searches for an intercept path

to any available waypoint and also checks for line of
sight to the boundary comers. When the vehicle

reaches the point where the second vehicle silhouette is
shown, corner 3 is within line of sight so a new

midpoint is computed between 7 and 3 (shown as
location [3 in figure 4). The process continues with new

midpoints computed until, while on the way to
midpoint E, a viable intercept path to the waypoint at

the entrance to the landing pattern is found.

The trajectories computed to fly towards a midpoint are
true S-turns with no straight leg segment between the
turns. This minimizes the deviation between the

trajectory and a line of sight to the target midpoint and

thus reduces the likelihood of a trajectory intersecting
the boundary." Trajectories that do intersect the

boundary are discarded. Figure 5 depicts the geometry
used to determine the lengths of the turn arcs to be
commanded to come to the new course. The first arc is

twice the magnitude ofy (the bearing to the end point of
the first arc) and the second is the desired track minus
the track at the time of the completion of the first arc.

From the figure it can be seen that 5'is given by

= ,6 -/_ (4)

where j is as before and fl is the desired change in
course. The computation of fiis as follows:

3

American Institute of Aeronautics and Astronautics

where,

fi= tan-l(_) (5)
L 4

L1 = R1 sin c_ (6)

Le = (R2 -LltRe +R 1 (7)

(8)
L 4 = L 3 + R 1 cos 6_ (9)

o(= j/]- 90° (10)

Boundary Detection Algorithm

There are many ways to describe range boundaries, but
a convenient manner is to define an arbitrary region in

two dimensional (2-D) space with a series of boundary
points which are connected by straight segments

(analogous to fence posts and fence rails defining the
perimeter of a field). Given this representation of the

allowed flight range, two pieces of information are of
particular interest: is the vehicle still inside the bounded

region and how far can it travel in any direction before
leaving the range?

Interior or exterior?

Displaying the current aircraft position and overlaying
the range bounds on a monitor quickly gives a

pilot/operator a qualitative sense of the aircraft's
position relative to the boundaries. To computationally
determine whether the current or a future vehicle

position (hereafter called the "test point") is inside or
outside a bounded region, an area comparison can be

performed in which the area of the bounded region is
compared to the area of the same region with a slight
modification. The modification is to insert the vehicle's

present position into the list of "fence posts" and see if

the area enclosed by the modified region is larger or

smaller than the unmodified region, as shown in
figure 6. If the area of the modified region is less than
the known area of the bounded region, the vehicle or

test point is inside the bounded region.

The area of an arbitrarily complex region as defined
here can be computed by summing the individual areas

of triangles formed by each boundary segment (fence
rail) and an arbitrary fixed point (vertex). This is easily

visualized for convex shapes: imagine wedges of a pie.
For regions that include concave boundaries, the

strategy will work if the triangular area computation

yields an opposite signed area whenever the triangle

encloses space outside the boundary. This may seem as
though it involves a complicated bookkeeping scheme,

but the area computation can be succinctly performed
with a determinant in a summation loop.

f11_ Yi xi-i (11)

Area = 2 i=2 1

Here xi and yi are the coordinates of the ith boundary

point, xl and yl are the coordinates of the arbitrary
vertex, and there are n boundary points.

The sign of the bounded area will depend on the

direction of travel around the perimeter of the
boundary, but the magnitude will be correct in the units

of the coordinates squared. Note that the direction of
travel around the individual triangle conveniently

reverses whenever space outside the boundary is
included. This method is simple to implement (the

determinant, with its row of ones, can be written
explicitly as five additions and three multiplications)

and requires only a method to identify the boundary
line that passes closest to the current position to

construct the modified region.

This technique for area computation requires that the
boundary be described in terms of a Cartesian

coordinate system. The spherical coordinates of
latitude, longitude, and altitude (including Earth radius)

must be converted. This requires the selection of a
local reference point from which a delta in latitude can
converted into a North-South distance and a delta in

longitude can be put in terms of East-West distance

based on the distance per degree at the current latitude.

Distance to boundary?

Computing the range to each boundary segment
involves knowing the length of the segment and the

length from the test point to the segment endpoints.
The question then is whether the test point is adjacent to

the segment such that a perpendicular from the segment
could intersect the test point. To determine this, the

following inequality is evaluated:

2 _ 2+1 > d 2 (12)

Here rgand rg+_are the distances from the test point to
the segment endpoints and d is the length of the

segment, as shown in figure 7. If this inequality is
false, then the range to the segment is the length of the

4

American Institute of Aeronautics and Astronautics

perpendicularwhichcanbequicklyfoundusinglawof
cosinesforfindingtheanglebetweentheboundaryand
oneofthesidesconnectingtestpointtoendpoint.Then
theperpendiculardistanceisproductofthesineofthe
anglejustcomputedandthedistancefromtheendpoint
to testpoint. Otherwise,theshortestdistanceto the
segmentisthedistancetothenearerendpoint.

Course-line distance to boundary

To compute the course-line distance to any boundary,
the bearing (fl) from the vehicle to all the boundary
points must be available. The procedure amounts to

looping through n+l boundary points (where point
number n+l point number 1 to close the boundary)

searching for a sign change in the difference between

the course and _i) from one node to the next. Where
there is a sign change, the course-line crosses the
boundary segment, as shown in figure 8. For non-

convex boundaries there may be more than one
crossing. Solving for the intersection points is a matter

of constructing equations for the boundary line and the
course-line and then solving for the intersection with
additional checks to be certain that the intersection is on

the finite segment length and forward of the vehicle

(not behind). Note that special logic must be used to
account for North-South running boundary segments or

courses where, when converted to a Cartesian system
the slope is infinite. Multiple intersections require

computing the range to each and selecting the nearest.

Turn Limiting

segment the one with the smaller bearing from the

current heading is the limiting case and the limiting
heading change is twice the bearing angle.

Guidance Law

The guidance law associated with the autoreturn

function is shown in figure 10. From a calculation of
lateral error (y) and lateral error rate (ydot), provided by

a navigation subroutine, an intercept angle back to the

course line is formed and limited (presently to 45
degrees). This is added to the current scheduled track

angle (Znav, from the flight path list) to form a track
angle command, ,_fclnd.

The current track angle, Z_/o, is compared to the track
angle command to form the track angle error. This error

is used to form a heading change to correct the error.

The heading change is added to present heading to form
a heading command and this is provided to the heading

command autopilot to steer the vehicle back to the
desired path. This algorithm is used for both straight

and turning flight path segments.

Go-around Feature

When maneuvering a vehicle within a confined range
one must take into consideration the vehicle's turn

radius when operating near the boundary. Whether a
planned turn will intersect a boundary can be
determined in a fashion similar to the course-line

algorithm. If the distances to each segment are already
known from earlier calculation and the vehicle turn

radius is known then all segments further away than
twice the turn radius can be excluded from

consideration. The remaining segments must be

checked on a case by case basis. Knowing the intended
turn direction, turn radius, and vehicle position and

heading; the location of the center of the turn is easily
computed. With the turn center and radius known an

equation for the turn circle can be constructed. The
circle equation and an equation for the line segment

being evaluated can be solved simultaneously to yield
any intersection points, as illustrated in figure 9. The

coupled equation is a quadratic and easily solved.
Valid intersections will be real and on the finite

segment length. In the case of two intersections on the

5

American Institute of Aeronautics and Astronautics

Once past waypoint 3 (figure 1), the final approach
waypoint, the autoreturn function monitors airspeed,

bank angle, and lateral and vertical deviations from the
desired final approach path with increasingly tight error
bounds. If an error bound is exceeded and sufficient

fuel remains, the vehicle is commanded to climb and

accelerate to pattern altitude and speed while tracking
runway centerline. Once past waypoint 1, a turn to

intercept the downwind leg is commanded, and the
landing is attempted again.

Implementation

A Microsoft® Excel spreadsheet is used to design the

waypoint and boundary lists. A Mathworks® Matlab
M-script takes the waypoint list and generates the flight

path list, consisting of alternating straight and circular
arc segments to follow the desired path.

A prototype of the intercept-generating algorithm and

boundary checking routine were written in Matlab M-
scripts and later rewritten in ANSI C for use in an

engineering simulation. The total implementation is
approximately 1,000 lines of executable C code

operating on a Silicon Graphics® workstation.

TheMatlabM-scriptforinterceptgenerationhasbeen
incorporatedin a Matlabbatchsimulationfor the
developmentandevaluationof theboundarycomer
averagingalgorithm. Thebatchsimulationfully
exercisestheon-boardalgorithmsdescribedherein.

Results

Shownin figure11is a runway,anarbitraryconvex
rangeboundary,thepreplannedflightpathsegments,
andthevehiclepositionatthetimeof engagementof
theautoreturnfunction.Alsoshownis theactualpath
flownbythevehicle(inareal-timesimulation).

Figures12and13depictautoreturninterceptsolutions
selectedby thealgorithmin thesimulationfroma
varietyof initial positionsandheadings.Notethe
positionsthatstartoutsidetheboundary- noactionis
takenuntiltheboundaryis crossed,whena turnto
interceptthenominalflightpathisgenerated.Notealso

thelargeradiusof theinitialturn,resultingfroma
relativelyhigh-speedinitialcondition.

Concluding Remarks

This paper has described a feasible solution to

intercepting and following a preplalmed flight path to
return a remotely-piloted vehicle autonomously to a

recovery area while avoiding prescribed arbitrary range
boundaries.

At present, the use of Matlab's Stateflow product is

being evaluated as another solution for the flight control
system implementation of this algorithm.

Reference

1. Chandler, P.R.; Rasmussen, S.; Patcher, M.: "UAV

Cooperative Path Planning", AIAA GNC, Denver, Co.
August 14-17, 2000.

Boundary_ J Runway

6

. _o+5 2

/

Waypoints _ _> / Flight path

+9 o'@a*

Figure 1. Autoreturn preplanned path with range boundary and waypoints shown.

/

Figure 2. Candidate intercept trajectories to a waypoint.

6

American Institute of Aeronautics and Astronautics

Waypoint

el

\

_

/
/

/
/

/

/
/

/
/

D

Figure 3. Geometry of waypoint intercept via right turn trajectories.

Figure 4. Flight path of vehicle within a bounded range guided by boundary comer point averaging.

7
American Institute of Aeronautics and Astronautics

Current

Heading

L

\\
\\

_\\\\\\

\

Desired

Heading
j J-

Y

', L3
\

'\,\,_// L4"

Figure 5. Geometry of right hand S-turn from current heading onto the desired heading.

Original
Range

Increased area

indicates test point
is in the exterior

Figure 6. Test to determine interior/exterior status of the aircraft relative to the bounded range.

Alternate path;
discarded

8

American Institute of Aeronautics and Astronautics

Boundary

Point i+1
Point i-1

/

Point id
/

Figure 7. Geometrical layout for determining the minimum range to a boundary segment.

Point i+1

Boundary

ri+ 1

Course
Line Point/

Figure 8. Schematic for determining course-line intersection with the boundary.

Course Line

Waypoint

Figure 9. Depiction of the two boundary intersections that arise when considering turning flight.

9

American Institute of Aeronautics and Astronautics

ydot

ft/s +right

Y

ft +right

Kydot

resolve resolve resolve

0 - 360 ° -+180 ° -+45 ° 0 - 360 °

Ky I+ _ A _ _ KXerr _

--_1 / _ © _1 © _1 / I-_ © t:_
_]- _]- L_ _J _]- _ degCF.

X nav] X a/cI _a/c J

deg CFN deg CFN deg CFN

CFN = Clockwise from North

Figure]0. Lateral guidance law for trajectory following autopilot.

re

6 _ 1

9 ,
_> _ +4

--.

-la

Figure 11. Nominal autoreturn trajectory from real-time simulation showing fight path intercept and following.

10

American Institute of Aeronautics and Astronautics

.fj-fJ'f __

ff_,/s//¸/ '_\

/ ¸ _

"_'_'\ " //,"//'_ j_. ///¸

"4 _,/

Figure 12. Autoretum trajectories from several different initial positions.

1

9 ° +3

',_.

Figure 13. Autoreutm trajectories form several different initial headings.

11

American Institute of Aeronautics and Astronautics

